Entrainment to video displays in primary visual cortex of macaque and humans.

نویسندگان

  • Patrick E Williams
  • Ferenc Mechler
  • James Gordon
  • Robert Shapley
  • Michael J Hawken
چکیده

Cathode ray tubes (CRTs) display images refreshed at high frequency, and the temporal waveform of each pixel is a luminance impulse only a few milliseconds long. Although humans are perceptually oblivious to this flicker, we show in V1 in macaque monkeys and in humans that extracellularly recorded action potentials (spikes) and visual-evoked potentials (VEPs) align with the video impulses, particularly when high-contrast stimuli are viewed. Of 91 single units analyzed in macaque with a 60 Hz video refresh, 29 cells (32%) significantly locked their firing to a uniform luminance display, but their number increased to 75 (82%) when high-contrast stimuli were shown. Of 92 cells exposed to a 100 Hz refresh, 21 (23%) significantly phase locked to high-contrast stimuli. Phase locking occurred in both input and output layers of V1 for simple and complex cells, regardless of preferred temporal frequency. VEPs recorded in humans showed significant phase locking to the video refresh in all seven observers. Like the monkey neurons, human VEPs more typically phase locked to stimuli containing spatial contrast than to spatially uniform stimuli. Phase locking decreased when the refresh rate was increased. Thus in humans and macaques phase locking to the high strobe frequency of a CRT is enhanced by a salient spatial pattern, although the perceptual impact is uncertain. We note that a billion people worldwide manage to watch TV without obvious distortion of their visual perception despite extraordinary phase locking of their V1s to a 50 or 60 Hz signal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural response dynamics of spiking and local field potential activity depend on CRT monitor refresh rate in the tree shrew primary visual cortex.

Entrainment of neural activity to luminance impulses during the refresh of cathode ray tube monitor displays has been observed in the primary visual cortex (V1) of humans and macaque monkeys. This entrainment is of interest because it tends to temporally align and thus synchronize neural responses at the millisecond timescale. Here we show that, in tree shrew V1, both spiking and local field po...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

The effect of 12 Hz Extremely Low-Frequency Electromagnetic Fields on Visual Memory of Male Macaque Monkeys

Introduction: Today, humans leave in a world surrounded by electromagnetic fields. Numerous studies have been carried out to discover the biological, physiological, and behavioral effects of electromagnetic fields on humans and animals. Given the biological similarities between monkeys and humans, the goal of the present research was to examine Visual Memory (VM), hormonal, genomic, and anatomi...

متن کامل

FMRI responses to video and point-light displays of moving humans and manipulable objects.

We used fMRI to study the organization of brain responses to different types of complex visual motion. In a rapid event-related design, subjects viewed video clips of humans performing different whole-body motions, video clips of manmade manipulable objects (tools) moving with their characteristic natural motion, point-light displays of human whole-body motion, and point-light displays of manip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 38  شماره 

صفحات  -

تاریخ انتشار 2004